Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression.

Identifieur interne : 000509 ( Main/Exploration ); précédent : 000508; suivant : 000510

Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression.

Auteurs : Ariel Herrera-Vásquez [Chili] ; Paula Salinas [Chili] ; Loreto Holuigue [Chili]

Source :

RBID : pubmed:25852720

Abstract

It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress.

DOI: 10.3389/fpls.2015.00171
PubMed: 25852720
PubMed Central: PMC4365548


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression.</title>
<author>
<name sortKey="Herrera Vasquez, Ariel" sort="Herrera Vasquez, Ariel" uniqKey="Herrera Vasquez A" first="Ariel" last="Herrera-Vásquez">Ariel Herrera-Vásquez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago</wicri:regionArea>
<wicri:noRegion>Pontificia Universidad Católica de Chile Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salinas, Paula" sort="Salinas, Paula" uniqKey="Salinas P" first="Paula" last="Salinas">Paula Salinas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago</wicri:regionArea>
<wicri:noRegion>Pontificia Universidad Católica de Chile Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holuigue, Loreto" sort="Holuigue, Loreto" uniqKey="Holuigue L" first="Loreto" last="Holuigue">Loreto Holuigue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago</wicri:regionArea>
<wicri:noRegion>Pontificia Universidad Católica de Chile Santiago</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25852720</idno>
<idno type="pmid">25852720</idno>
<idno type="doi">10.3389/fpls.2015.00171</idno>
<idno type="pmc">PMC4365548</idno>
<idno type="wicri:Area/Main/Corpus">000541</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000541</idno>
<idno type="wicri:Area/Main/Curation">000541</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000541</idno>
<idno type="wicri:Area/Main/Exploration">000541</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression.</title>
<author>
<name sortKey="Herrera Vasquez, Ariel" sort="Herrera Vasquez, Ariel" uniqKey="Herrera Vasquez A" first="Ariel" last="Herrera-Vásquez">Ariel Herrera-Vásquez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago</wicri:regionArea>
<wicri:noRegion>Pontificia Universidad Católica de Chile Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salinas, Paula" sort="Salinas, Paula" uniqKey="Salinas P" first="Paula" last="Salinas">Paula Salinas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago</wicri:regionArea>
<wicri:noRegion>Pontificia Universidad Católica de Chile Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Holuigue, Loreto" sort="Holuigue, Loreto" uniqKey="Holuigue L" first="Loreto" last="Holuigue">Loreto Holuigue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago</wicri:regionArea>
<wicri:noRegion>Pontificia Universidad Católica de Chile Santiago</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25852720</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression.</ArticleTitle>
<Pagination>
<MedlinePgn>171</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2015.00171</ELocationID>
<Abstract>
<AbstractText>It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Herrera-Vásquez</LastName>
<ForeName>Ariel</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salinas</LastName>
<ForeName>Paula</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holuigue</LastName>
<ForeName>Loreto</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Front Plant Sci. 2017 May 31;8:964</RefSource>
<PMID Version="1">28580008</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NPR1</Keyword>
<Keyword MajorTopicYN="N">TGA transcription factors</Keyword>
<Keyword MajorTopicYN="N">glutaredoxin GRXC9/GRX480</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">salicylic acid</Keyword>
<Keyword MajorTopicYN="N">thioredoxin TRXh5</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25852720</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2015.00171</ArticleId>
<ArticleId IdType="pmc">PMC4365548</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Aug 17;406(6797):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 5;276(1):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11034999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Dec;26(4):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2339-2350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Feb 2;489(2-3):237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11165257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 29;414(6863):562-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 1;30(3):775-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Sep;6(9):1301-1310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1516-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1846-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1006-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):957-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8054-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):383-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1795-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Nov;2(11):e123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):336-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Oct;226(5):1277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):768-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18334669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1358-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18539774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 26;457(7233):1154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 May;70(1-2):79-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19199050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jul;136(3):284-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19832945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1692-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Dec;23(12):1531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20653410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):626-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2894-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20716698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1805-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):434-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Dec;5(12):1534-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21150285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 May 19;11:89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21595875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Nov;68(3):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Aug;23(8):2809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):503-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22007023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):2013-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 6;287(15):11717-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22334687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Feb;7(2):210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22353869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Jul;31(7):1269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22466450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1124-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 16;486(7402):228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2012 Jun 28;1(6):639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22813739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Aug;7(8):944-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22836499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Nov;25(11):1459-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22876961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jan;73(1):91-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Feb;26(2):151-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Feb;64(4):963-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23349138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:839-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Jan;9(1):e1003127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Feb;25(2):744-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 May 21;110(21):8744-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23650383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Jul;18(7):402-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23683896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Oct;16(5):575-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23876676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 27;8(9):e77378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24086773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Dec;163(4):1741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24134885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Feb;38(2):299-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24428628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 23;5:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May 16;165(3):1367-1379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24834923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jul 2;165(4):1671-1683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24989234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Apr;112:110-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25096754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Oct 2;56(1):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25201412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Apr;112:33-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25306398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jul;38(7):1434-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 09;5:697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol Report. 2015;33:624-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26696694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11312-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7479986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Jun;6(6):863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8061520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Dec 17;262(5141):1883-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8266079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Oct;16(2):223-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9839467</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Chili</li>
</country>
</list>
<tree>
<country name="Chili">
<noRegion>
<name sortKey="Herrera Vasquez, Ariel" sort="Herrera Vasquez, Ariel" uniqKey="Herrera Vasquez A" first="Ariel" last="Herrera-Vásquez">Ariel Herrera-Vásquez</name>
</noRegion>
<name sortKey="Holuigue, Loreto" sort="Holuigue, Loreto" uniqKey="Holuigue L" first="Loreto" last="Holuigue">Loreto Holuigue</name>
<name sortKey="Salinas, Paula" sort="Salinas, Paula" uniqKey="Salinas P" first="Paula" last="Salinas">Paula Salinas</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25852720
   |texte=   Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25852720" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020